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Traditionally, the stochastic ITO transition matrices provide a simple general method for obtaining the joint genotype
distribution and genotypic correlations between any specified pair of noninbred relatives. The ITO method has
been widely used in modern genetic analysis; however, since it was originally derived for unordered genotypes, it
is not very useful in some new applications—for example, when one is modeling genomic imprinting and must
keep track of the parental origin of alleles. To address these new, emerging problems, here we extend the ITO
method to handle ordered genotypes. Our extended method is applied to calculate the covariance in unilineal and
bilineal relatives under genomic imprinting, and some generalized linear functions of the transition matrices are
given. Since the ITO method is limited to biallelic loci and to unilineal and bilineal relatives, we derive a general
formula for calculating the genetic covariance using ordered genotypes for any type of relative pair.
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The “ITO” paper by Li and Sacks1 provides an elegant
algorithm for deriving joint genotype probabilities be-
tween pairs of relatives. With the ITO method, given
the genotype of an individual, it is possible to derive the
conditional probability of the genotypes of any nonin-
bred relative of that individual: , where de-P(G FG ) G2 1 i

notes the genotype of the ith person. The ITO method
was extended to handle multiple alleles and was gen-
eralized for inbred populations.2 The ITO method was
generalized for multiple loci and was also extended to
handle consanguinity.3

Although the ITO method has been widely used to
solve various problems in human genetics, it uses only
unordered genotypes; that is, the genotypes are unor-
dered in the sense that maternal and parental contribu-
tions are not distinguished. However, some new appli-
cations require the use of ordered genotypes; for ex-
ample, when one is modeling genomic imprinting, one
must keep track of the parental (ordered) origin of al-
leles. Genomic imprinting occurs when the functional
activity of a person’s allele depends on whether it was
inherited maternally or paternally. Strong genomic im-
printing renders an imprinted locus effectively haploid
and thereby causes certain genetic diseases, including dis-
orders affecting cell growth, development, and behav-
ior.4 From the point of view of quantitative genetics, the
effect of genomic imprinting is to make the phenotypical

values of reciprocal heterozygotes different, which means
various basic values of genetic quantities, as well as cor-
relations, are not the same as the standard values. This
difference may be crucial, especially in human quanti-
tative genetics.

Although Campbell and Elston3 did attempt to extend
the ITO method to handle ordered genotypes, their ex-
tension is flawed, because of an incorrect assumption
that does not generalize (as we explain in detail below).
Li5 revised the Li-Sacks matrices1 to ma-4 # 4 2 # 2
trices by focusing on allele identity by descent (IBD)
instead of genotype IBD. However, Li5 still did not con-
sider ordered genotypes.

More-accurate modeling of underlying biological pro-
cesses should lead to more-accurate and more-powerful
inferences. In the present study, we extended the ITO
method to handle ordered genotypes. We derived some
generalized linear functions of the transition matrices for
deriving the probabilities of an individual’s genotype,
conditional on a relative’s genotype. In the application
part of this work, our extended method is applied to
calculate the covariance between both unilineal and bi-
lineal relatives under imprinting. Although the ITO ap-
proach is pleasing in terms of its clarity and understand-
ability, it is difficult to extend it to handle loci with mul-
tiple alleles, as well as to handle very complex inbred
relative pairs. Therefore, we also derive a completely
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general formula for the genetic covariance, using or-
dered genotypes for any type of relative pair; this uses
the approach of Gillois,6 as more recently elucidated by
Lange.7 The resulting covariance equations can be easily
applied in a variance component-based linkage analysis
that takes genomic imprinting into account (not shown
here).

Here, we notationally distinguish ordered and unor-
dered genotypes. Accordingly, we let , with a slash,A/a
represent an unordered genotype and let , with aAFa
vertical bar, denote an ordered genotype. Here, without
loss of generality, the maternal allele is listed to the left
of the vertical bar and the paternal allele is listed to the
right.

Two diploid outbred related individuals may share (1)
both genes IBD, (2) one gene IBD, or (3) no genes IBD.
If we denote transition matrices as matrices of condi-
tional probabilities, then the three basic transition ma-
trices corresponding to the number of identical genes
shared in common by the two relatives are as follows.1

The matrix I:

G1

G p2

A/A A/a a/a

A/A 1 0 0
A/a 0 1 0
a/a 0 0 1

The matrix T:

G1

G p2

A/A A/a a/a

A/A p q 0

A/a
p
2

1
2

q
2

a/a 0 p q

The matrix O:

G1

G p2

A/A A/a a/a

A/A 2p 2pq 2q
A/a 2p 2pq 2q
a/a 2p 2pq 2q

Following convention, in these three matrices, p and
q represent the allele frequencies of A and a in the pop-
ulation, respectively, with . The first matrix,p � q p 1
I, , gives the genotype transitionP(G FG ,share 2 IBD)2 1

probabilities for two relatives when they share two al-

leles IBD with person 1’s genotype given. In such a case,
their genotypes are necessarily identical. When one is
given to be A/A, the other must be the A/A, etc. The
second matrix, T, , gives the tran-P(G FG ,share 1 IBD)2 1

sition probabilities from one relative to the other when
they share one gene IBD. Suppose the given relative is
of genotype A/a (second row of T), then the other relative
must share allele A or allele a in common with proba-
bility 0.5 plus a random allele from the population. The
third matrix, O, , gives the con-P(G FG ,share 0 IBD)2 1

ditional probabilities when the two individuals do not
have any alleles IBD in common. Hence, they are ge-
netically unrelated individuals. Regardless of the geno-
type of one individual, the probabilities of the other
individual having the genotypes (A/A, A/a, a/a) remain
simply , , and , respectively, under Hardy-Wein-2 2p 2pq q
berg equilibrium (HWE).

With these three basic matrices, it is then straightfor-
ward to find the joint distribution and correlation be-
tween any pair of unilineal relatives (unordered geno-
types) in a random-mating population.1 For autosomal
genes, the general expression of the transition matrix for
a specific pair of relatives is given as

R p c I � c T � c O ,I T o

where , , and are the probabilities that the twoc c cI T o

specified relatives share both, one, and no genes IBD,
respectively, with .c � c � c p 1I T o

Since the original ITO matrices were derived for unor-
dered genotypes, they are not useful when one is mod-
eling imprinting, since one must then keep track of pa-
rental origin. Thus, to take genomic imprinting into con-
sideration, we must track where the IBD gene comes
from by using ordered genotypes (where we list the ma-
ternal allele first). Since the heterozygote may haveAFa
a different genotypic value from , Campbell and El-aFA
ston3 introduced four basic transition matrices with di-
mension (instead of three matrices), which4 # 4 3 # 3
are listed below. Each matrix element represents the
probability of sibling 2 having the specific ordered ge-
notype conditional on the genotype of sibling 1. The
subscripts m and f represent male and female. We use
the same notation I and O as defined in the ma-3 # 3
trices discussed above. The matrix ,S P(G FG ,share 1m 2 1

, specifies the probabilities ofallele IBD through father)
sibling 2’s genotypes conditional on sibling 1 sharing
one allele IBD through the father. Similarly, the matrix

, , specifiesS P(G FG ,share 1 allele IBD through mother)f 2 1

the probabilities of sibling 2’s genotypes conditional on
sibling 1 sharing one allele IBD through the mother.
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The matrix I:

G1

G p2

AFA AFa aFA aFa

AFA 1 0 0 0
AFa 0 1 0 0
aFA 0 0 1 0
aFa 0 0 0 1

The matrix Sm:

G1

G p2

AFA AFa aFA aFa

AFA p 0 q 0
AFa 0 p 0 q
aFA p 0 q 0
aFa 0 p 0 q

The matrix Sf:

G1

G p2

AFA AFa aFA aFa

AFA p q 0 0
AFa p q 0 0
aFA 0 0 p q
aFa 0 0 p q

The matrix O:

G1

G p2

AFA AFa aFA aFa

AFA 2p pq pq 2q
AFa 2p pq pq 2q
aFA 2p pq pq 2q
aFa 2p pq pq 2q

Campbell and Elston3 proposed that the transition ma-
trix R for any specified pair of relatives could be derived
by the formula

c cT TR p c I � S � S � c O .I m f o2 2

However, their formula for R is incorrect for some pairs
of relatives, as we explain in detail below. Furthermore,
a more complete derivation of the ITO method for or-
dered genotypes requires the specification of two addi-
tional matrices, and , which concern parent-off-T Tf m

spring transitions. These matrices are as follows.

The matrix Tm:

Gfather

G poffspring

A/A A/a a/A a/a

A/A p 0 q 0

A/a
p
2

p
2

q
2

q
2

a/A
p
2

p
2

q
2

q
2

a/a 0 p 0 q

The matrix Tf:

Gmother

G poffspring

A/A A/a a/A a/a

A/A p q 0 0

A/a
p
2

q
2

p
2

q
2

a/A
p
2

q
2

p
2

q
2

a/a 0 0 p q

The derivations of the matrices , ,T P(G FG )m offspring father

and , , are straightforward. For ex-T P(G FG )f offspring mother

ample, if the genotype of the mother is , the condi-AFa
tional probabilities that the offspring’s genotypes are

, , , and are , , , and , respectively.p q p qAFA AFa aFA aFa 2 2 2 2

The reason is that the alleles A and a from the mother
each have a 50% chance of being transmitted to her
offspring.

Li5 showed how the and matrices3 can be4 # 4 S Sm f

derived as “‘external tensors” of the matrices.2 # 2
However, the matrices and cannot be derived viaT Tf m

outer products. We have shown that can be com-T (T )f m

puted as a weighted sum of the matrix and aS (S )f m

permuted version of , where the middle two rowsS (S )f m

are switched (details omitted).
Now, with the above six ordered genotype tran-4 # 4

sition matrices, we can derive the conditional probabil-
ities for two specified outbred relatives, in which we
track the origin of both alleles at a locus. We first con-
sider some simple unilineal relatives. For parent and off-
spring pair, since they share one gene identical by de-
scent, the transition probabilities from parent to off-
spring for unordered genotypes are the elements of ma-
trix T.1 However, in the ordered genotype method, we
have to consider separately the transition of paternal and
maternal alleles. The elements of matrix are now theTm

transition probabilities from father to offspring, and the
elements of matrix are the transition probabilitiesTf

from mother to offspring. Note that with ordered geno-
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types, is not equal to ,P(G FG ) P(G FG )father offspring offspring father

whereas these two are equal with unordered genotypes.
Consider the transition probabilities from maternal

grandmother to grandchild GC through mother M. If
the genotype of the maternal grandmother is , theAFA
resulting genotype of her daughter M will be (whereAF?
? is some unknown allele), so the total conditional prob-
ability that the grandchild GC is with allele A in-AFa
herited from the mother M is

1 1
� p q .( )

2 2

The reason is that there is a 50% chance that grandchild
GC receives the grandmaternal A allele from her mother
M and a 50% chance that she receives her maternal
grandfather’s allele, which is A with probability p. So
the conditional probability of the grandchild’s ordered
genotype being is thenAFa

1 1
� p q ,( )

2 2

where q is the probability of grandchild GC randomly
inheriting the second allele (allele a) from his/her father.

It is much easier to understand if we do the above
derivation with matrix manipulation. The probabilities
of the mother are the elements of first row of matrix

, since we are conditioning on the grandmother’sTf

genotype. For each genotype of the mother M, theAFA
elements of second column of are the probabilities ofTf

the genotype of the grandchild GC being . The totalAFa
conditional probability for the grandchild having ge-
notype given grandmother’s genotype via theAFa AFA
grandchild’s mother is the product of the first row and
second column of the transition matrix Tf

q⎛ ⎞
q

2q 1 12( )p q 0 0 p pq � p � p q .( )q 2 2 2
2⎜ ⎟
0⎝ ⎠

By the same algorithm, the conditional probabilities for
a grandchild given a specific genotype for the maternal
grandmother are given by the elements of the product
matrix . In the same manner, the condi-2T # T p Tf f f

tional probabilities of a grandchild’s genotypes given a
specific genotype for the maternal grandfather (via his/
her mother) are given by the elements of the product
matrix .T # Tm f

For the above grandmother-grandchild pair relation-
ship, Campbell and Elston’s3 formula (p. 229)

S S Om fR p � �
4 4 2

gives

1 1
� p q( )

4 2

as the probability of the genotype of the grandchild being
given that the genotype of the grandmother is ,AFa AFA

which is clearly wrong. For another example, for an
aunt-niece pair connected through the mother, ,1c pT 2

but does not split in half as Campbell and ElstoncT

suggest; rather, all its “weight” goes on the , and theTf

correct matrix is

T OfR p � .
2 2

Li and Sacks1 showed that

T O2T p � ,
2 2

which means a grandparent-grandchild pair shares one
gene IBD and no gene IBD with an equal 50% chance.

also gives the conditional probabilities for half sib-2T
lings. They also showed that, in general,

n n1 1n�1T p T � 1 � O ,( ) ( )[ ]2 2

where is the total number of generations betweenn � 1
the two relatives. When ordered genotypes are used, sim-
ilar equations hold. For example,

⎧ ⎫1 1 1 12 2T p T � O, T p T � Om m f f2 2 2 2

1 1 1 1
T T p T � O, T T p T � Om f f f m m⎪ ⎪2 2 2 2

,⎨ ⎬
1 3 1 3

T TT p T � O, T TT p T � Om f f f m f m m4 4 4 4

1 3 1 3⎪ ⎪T T T p T � O, T T T p T � Of m m m f m f f4 4 4 4⎩ ⎭

where gives the conditional probabilities for half sib-2Tm

lings who have same father but different mothers and
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Figure 1 Genotypic values of the four possible genotypes

gives the conditional probabilities for half siblings who2Tf

have same mother but different fathers. And, in general,

⎧ ⎫
n1 1n�1 nT p ( ) T � 1 � O( )m(f) m(f) [ ]2 2

n n⎪ ⎪1 1…(T T T )T p T � 1 � O,( ) ( )i i i m(f) m(f)⎨ ⎬1 2 n [ ]2 2 ,
i � {m,f},j p 1, … ,nj⎪ ⎪

n�1T r O, as n r �⎩ ⎭m(f)

where is the number of generations between twon � 1
relatives. When n is infinitely large, the conditional prob-
abilities for two relatives are given by the elements of
the matrix O; that is, the two relatives could be treated
as two random samples from the general human popu-
lation who are all unrelated to each other.

Now, we model bilineal relatives. Let us first consider
the simple but most important type: full siblings. Since
full siblings have a 25% chance of sharing two genes
IBD and a 25% chance of sharing no genes IBD, they
therefore have a 50% chance of sharing one gene IBD.
However, we are dealing with ordered genotypes, so the
two siblings have a 25% chance of sharing one maternal
allele IBD and no paternal allele IBD, and vice versa.
Thus, the transition matrix for full siblings is

1 1 1 1S p I � S � S � O . (1)m f4 4 4 4

Other relatives who can share two genes IBD are double–
first cousins whose parents are members of two sibships.
There are six types of sibships in the general population,
because of six different mating types.1 With use of the
same algorithm mentioned in figure 1 of the work of Li
and Sacks1 but with maternal and paternal alleles la-
beled, we derive the conditional matrix for double–first
cousins, which is

1 3 3 92D p S p I � S � S � O .m f16 16 16 16

Next, we try to model the relationship for some unlineal
relatives in which the conditional matrix for full sib-S
lings and the matrices and are involved. We useT Tm f

the broad sense of the term “avuncular,” which includes
uncle-nephew, uncle-niece, aunt-nephew, and aunt-niece
relationships. The conditional probabilities of a neph-
ew’s genotypes are then given by the product of STm(f)

conditional on the uncle’s genotypes. Conversely, the
conditional probabilities of the uncle’s genotypes are
given by elements of the product of conditionalT Sm(f)

on the genotypes of the nephew. Whether or is theT Tm f

transition matrix involved depends on whether the
mother or the father of the nephew is the “connecting”
relative. We verified that , which indicatesST p T Sm(f) m(f)

that the uncle-nephew matrix is the same as the nephew-
uncle transition matrix.1 Through further multiplication
of matrices, we can also prove “the most remarkable
property”1(p352); that is,

2ST p T S p T ,m(f) m(f) m(f)

which indicates that uncle-nephew relationships are the
same as those for grandparent-grandchild or half sib-
lings1; whether the transition matrix or is involvedT Tm f

depends on whether the uncle is the nephew’s paternal
uncle or the nephew’s maternal uncle. Extension of the
above equations results in other important matrices,

1 33T ST p T p T � O ,m(f ) m(f) m(f) m(f)4 4

whose elements give the conditional probabilities for first
cousins and the probabilities for the great-grandchild
conditional on one given great-grandparent.

Next, as an illustration of the utility of our extended
ordered-genotype ITO method, we now derive equations
for the genetic covariance between siblings and for the
covariance between parent and child, with genomic im-
printing considered. We begin with the standard genetic
model and extend it to consider the case in which a locus
is subject to imprinting. To derive the covariance for-
mulas, it is necessary first to define the QTL model and
its variance components. Here, we briefly review the re-
sults of Spencer.8 Assume that an unobserved major gene
has two alleles, allele A and allele a, with andP(A) p p

. In the standard genetic model, the genotypicP(a) p q
value is a if the genotype is , that of the homo-A/A a/a
zygote is , and that of heterozygote is d. However,�a A/a
under imprinting, different genotypic values are possible
for the two possible heterozygotes: for and ford AFa d1 2

(fig. 1). It is usually assumed that andaFA a � d d �1 2

. We have ( ) when there is complete�a d p a d p �a1 2
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Table 1

Values of Genetic Components of Variance under Genomic Imprinting

Name Expression Definition

m a(p � q) � (d � d )pq1 2 Mean phenotype of a population in HWE
am a � d q � d p2 1 Average effect of a gene substitution for males
af a � d q � d p1 2 Average effect of a gene substitution for females

2jAm
22pqam Additive genetic variance for males

2jAf
22pqaf Additive genetic variance for females

2jD
2 2pq pq(d � d ) � (d � d )[ ]1 2 1 2 Dominance genetic variance

2jDm
2 2pq pq(d � d ) � (d � d )[ ]1 2 1 2 Dominance genetic variance for males

2jDf
2 2pq[pq(d � d ) � (d � d ) ]1 2 1 2 Dominance genetic variance for females

2jG
2 2pq 2a a � pq(d � d ) � (d � d )[ ]m f 1 2 1 2 Overall genetic variance

jADm pqa (d � d )m 1 2 Covariance between dominance deviation and breeding value for males
jADf pqa (d � d )f 2 1 Covariance between dominance deviation and breeding value for females

NOTE.—The table reflects the work of Spencer.8

inactivation of the maternally (paternally) derived allele.
A measure of imprinting is denoted as9

d � d1 2I p .
2

Spencer8 derived many useful genetic components of
variance under imprinting, which are summarized in ta-
ble 1. When —that is, there is no imprintingd p d p d1 2

( )—the above various genetic values “revert” toI p 0
their standard values. We further show that

2 2 2j � j p 2jAm Af a

and

2 2j � j � j p jD ADm ADf d

(no constraints on I), where and are the additive2 2j ja d

genetic variance and dominance genetic variance, re-
spectively, under the standard genetic model with no
imprinting (details not presented here).

With the above definitions of different genetic variance
components (table 1), we now begin to derive the co-
variance between siblings and between parent and off-
spring under genomic imprinting, using our transition
matrices. Spencer8 derived the covariance between par-
ent and offspring under genomic imprinting. However,
he did not derive the covariance between a pair of full
siblings. As an illustration of the utility of our ordered
ITO method, we first derive the covariance between sib
pairs and also include a short part on deriving covariance
between parent and offspring, to verify that our results
match Spencer’s results.

Let denote the probability of sibling 1 and siblingk0

2 sharing no alleles IBD, denote the probability ofk1m

sibling 1 and sibling 2 sharing one paternal allele IBD,
denote the probability of sibling 1 sharing one ma-k1f

ternal allele IBD with sibling 2, and denote the prob-k2

ability of sibling 1 and sibling 2 sharing two alleles IBD.
The probability of sibling 2 having a particular genotype
( ) given the genotype of sibling 1 ( ) can be calcu-G G2 1

lated as

P(G FG )2 1

2

p P(G FG ,share i alleles IBD)� 2 1
ip0

# P(share i alleles IBD)

p k I � k S � k S � k O ,2 1m m 1f f 0

which, for full siblings, is the same as matrix (in eq.S
[1] above).

Given the above conditional matrix, the joint prob-
ability of sibling 2 having a certain genotype and sib-s2

ling 1 having another certain genotype , cans P(s ,s )1 1 2

be derived by multiplying the specific element of the
above matrix by the probability of having theP(G FG )2 1

certain genotype for sibling 1. The genetic covariance
between a pair of siblings can be derived as

Cov (s ,s ) p E(s s ) � E(s )E(s )1 2 1 2 1 2

2p s s P(s ,s ) � m�� 1 2 1 2
s s1 2

k � k k � k1m 2 1f 22 2p j � jAm Af2 2
2�k (j � j � j ) . (2)2 D ADm ADf

For full siblings, , , , andk p 1/4 k p 1/4 k p 1/40 1m 1f

; we get the following model from equation (2):k p 1/42

1 1 12 2 2Cov (s ,s ) p j � j � (j � j � j ) . (3)1 2 Am Af D ADm ADf4 4 4

As stated earlier, and2 2 2 2j � j p 2j j � j �Am Af a D ADm
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Figure 2 The 15 possible detailed identity states for individuals i and j with ordered genotypes. The squares represent maternal alleles,
and the circles represent paternal alleles. Within each state, the top two symbols are i’s alleles, and the lower two symbols are j’s alleles. Lines
connect alleles that are IBD (in the style of Sobel et al.12 and Jacquard13).

( and are additive genetic variance and2 2 2j p j j jADf d a d

dominance genetic variance, respectively, under the stan-
dard genetic model). Thus, equation (3) simplifies to be
exactly the standard genetic model, defined as

1 12 2Cov (s ,s ) p j � j .1 2 a d2 4

For half siblings, we distinguish between half siblings who
share a mother ( , , and ) andk p 1/2 k p 1/2 k p 00 1f 2

half siblings who share a father ( , ,k p 1/2 k p 1/20 1m

and ). Equation (2) gives, respectively,k p 02

1 2Cov (s ,s ) p j1 2 Af4

and

1 2Cov (s ,s ) p j . (4)1 2 Am4

In the next section, we derive equations for the
genetic covariance for a parent-offspring pair as fol-
lows. Let o and be denoted as the genotypic valuespf

of offspring and mother, respectively. The joint proba-
bility of the offspring having a certain genotype and the
mother having another genotype, , can be derivedP(o,p )f
by multiplying the specific element of the matrix —Tf

)—by the probability that the motherP(G FGoffspring mother

has that genotype. Then, the covariance is calculatedjopf

as

Cov (o,p) p E(op ) � E(o)E(p )f f f

2p op P(o,p ) � m�� f f
o pf

1 12p j � j . (5)Af ADf2 2

Similarly, we can derive the covariance equation for fa-
ther and offspring:

1 12Cov (o,p ) p j � j . (6)m Am ADm2 2

Although historically attractive, the ITO method we
generalized here is limited to biallelic loci and to uni-
lineal and bilineal relatives. To tackle these limitations,
we now introduce a more general way of calculating
the covariance for any relative pair under imprinting.
This is a generalization of the approach used by Gillois,6

which was more recently summarized by Lange,7 whose
notation we use here.

First, suppose there are two or more alleles, let the
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kth allele have population frequency and the orderedpk

genotype have the trait value , then we can writekFl wkFl

w p a � b � d ,kFl k l kFl

where is the additive impact of the maternal allele,ak

is the additive impact of the paternal allele, andb dl kFl

is the residual departure from additivity. Under imprint-
ing, the identity does not necessarily hold.w p wkFl lFk

No generality is lost if we adjust the trait mean to be 0,
so that . The allelic contributions� � w p p p 0 akFl k l kk l

and are chosen to minimize the deviationsb d pl kFl

. One way of doing this is to minimize thew � a � bkFl k l

sum of squares

2 2d p p p (w � a � b ) p p ,�� ��kFl k l kFl k l k l
k l k l

which is achieved by taking anda p � w p b pk kFl l ll

(see appendix A).� w pkFl kk

Next, suppose individuals i and j are relatives. The
covariance between the trait values andCov (X ,X ) Xi j i

of i and j can be computed in the following steps.Xj

Here, we use the 15 detailed identity states of Gillois,6

Harris,10 and Jacquard.11 Figure 2 (in the style of Sobel
et al.12 and Jacquard13) shows the 15 detailed identity
states that are possible when maternal and paternal al-
leles are distinguished. The states vary from sharing no
alleles IBD, , to sharing all four alleles IBD, .S S15 1

Conditioning on these detailed identity states of
the two relatives and using the identities � a p pk kk

, , , and , we can0 � b p p 0 � d p p 0 � d p p 0l l kFl k kFl ll k l

deduce

2E(X ,X ) p (d � d � d � d � d ) a p�i j 1 2 4 9 10 k k
k

2�(d � d � d � d � d ) b p�1 3 5 9 11 k k
k

�(2d � d � d � d � d � 2d � d � d ) a b p�1 2 3 4 5 12 13 14 k k k
k

�(2d � d � d ) a d p�1 2 4 k kFk k
k

�(2d � d � d ) b d p�1 3 5 k kFk k
k

2�d d p�1 kFk k
k

�d d d p p��6 kFk lFl k l
k l

2�d d p p��9 kFl k l
k l

�d d d p p ,��12 kFl lFk k l
k l

(7)

where is the probability of the ith detailed identitydi

state.11 A detailed derivation of equation (7) is given in
appendix A. When there is no imprinting, equation (7)
reduces to the general covariance equation derived by
Gillois.6

Since trait means , the covarianceE(X ) p E(X ) p 0i j

, which is given in equation (7). IfCov (X ,X ) p E(X ,X )i j i j

we assume that neither i nor j is inbred, we have d p1

. The covariance then sim-d p … p d p 0 Cov (X ,X )2 8 i j

plifies to

2 2Cov (X ,X ) p (d � d ) a p � (d � d ) b p� �i j 9 10 k k 9 11 k k
k k

�(2d � d � d ) a b p�12 13 14 k k k
k

2�d d p p � d d d p p .�� ��9 kFl k l 12 kFl lFk k l
k l k l

(8)

When there are two alleles, we can rewrite the summa-
tions in terms of our notation used above:

⎧ ⎫12 2a p p j� k k Af2k

12 2b p p j� k k Am⎪ ⎪2k
⎨ ⎬ .

1 12 2a b p p j � j p j � j� k k k Am ADm Af ADf2 2k⎪ ⎪2 2d p p p d d p p p j�� ��kFl k l kFl lFk k l d⎩ ⎭k l k l

Thus, from our general equation (8), we obtain the
same covariances as we derived above for full siblings
(eq. [3]), half siblings (eq. [4]), mother-offspring pairs
(eq. [5]), and father-offspring pairs (eq. [6]). Further-
more, our equation (7) can be used to generalize the
variance-components model developed by Shete et al.14

to handle all possible types of inbred relative pairs.
Once the detailed identity coefficients11 are computed,

any relative-to-relative covariance is expressible in terms
of the theoretical variances and covariances defined
above. An algorithm for computing these detailed iden-
tity coefficients (under the assumption that the entire
pedigree structure connecting the two individuals is
known) was derived by Nadot and Vaysseix.15

In summary, in this work, we extended the ITO meth-
od,1,3 to handle ordered genotypes in an attempt to gen-
eralize this simple but useful method. We also showed
that Campbell and Elston’s previous formula3 for the
transition matrix R is incorrect for some pairs of rela-
tives. In practice, a more complete derivation of the ITO
method for ordered genotypes requires the specification
of two additional matrices, and , which we derivedT Tm f
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in this work. By tracking the paternal or maternal origin
of each allele, we now have six basic transition matrices,
with the help of which it is possible to derive conditional
probabilities between two specified outbred relatives
when we need to distinguish the two forms of the het-
erozygotes. In addition to providing an algorithm for
deriving conditional probabilities with use of ordered
genotypes, the ITO approach can be used to derive for-
mulas for the genetic covariance between a pair of rel-
atives. To complement the more limited ITO approach,
we also derived a completely general formula, for the
genetic covariance, using ordered genotypes; this for-
mula is applicable to multiallelic loci and to any type of
inbred relative pair.

We illustrated the utility of the extended ITO approach
and our general covariance formula by using them to
derive the genetic covariance under imprinting between
parent and offspring and between sib pairs. The derived
formulas for the covariance between a parent’s and an
offspring’s genotypic values are the same as those given
in the study by Spencer.8 The consistency of our equa-
tions with previous work proves the applicability of our

proposed method for the calculation of covariance be-
tween two relatives when we have to deal with ordered
genotypes—for example, when we try to model genomic
imprinting in human quantitative genetic analysis. Also,
it should be noted that our work could help accurately
test genetic hypotheses or predict risk (for genetic coun-
seling), given a known genetic model.3 Our extended
ordered-genotype ITO method and our general covari-
ance formula, with their easy applicability, will be help-
ful in modeling the complex relationship between rela-
tives under the important biological phenomena (genomic
imprinting) that need further statistical attention.
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Appendix A

Covariance between Individuals i and j under Imprinting

Let the kth allele have population frequency and the ordered genotype have trait value , then we canp kFl wk kFl

write , where is the additive impact of the maternal allele, is the additive impact of thew p a � b � d a bkFl k l kFl k l

paternal allele, and is the residual departure from additivity. Under imprinting, the identity does notd w p wkFl kFl lFk

necessarily hold. No generality is lost if we take the trait mean

w p p p 0 .�� kFl k l
k l

To minimize

2 2d p (w � a � b ) p p ,�� ��kFl kFl k l k l
k l k l

the partial derivative with respect to was taken, which givesak

�2 (w � a � b )p p p �2 d p p p 0 ,�� ��kFl k l k l kFl k l
k l k l

which is true only if

⎧ ⎫d p p 0, d p p 0� �kFl k kFl l
k l⎪ ⎪ .⎨ ⎬

⎪ ⎪a p p 0, b p p 0� �k k l l⎩ ⎭k l
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Using the above facts and because

0 p d p� kFl l
l

p w p � a p � a p� � �kFl l k l l l
l l l

p w p � a ,� kFl l k
l

we can conclude that . Similarly, also holds.a p � w p b p � w pk kFl l l kFl kl k

If and are traits of individuals i and j, since , then the covariance isX X E(X ) p E(X ) p 0i j i j

Cov (X ,X ) p E(X ,X )i j i j

2p d (a � b � d ) p � d (a � b � d )(a � b � d )p p� ��1 k k kFk k 2 k k kFk k l kFl k l
k k l

�d (a � b � d )(a � b � d )p p��3 k k kFk l k lFk k l
k l

�d (a � b � d )(a � b � d )p p��4 k l kFl k k kFk k l
k l

�d (a � b � d )(a � b � d )p p��5 k l kFl l l lFl k l
k l

�d (a � b � d )(a � b � d )p p��6 k k kFk l l lFl k l
k l

�d (a � b � d )(a � b � d )p p p���7 k k kFk l m lFm k l m
k l m

�d (a � b � d )(a � b � d )p p p���8 k l kFl m m mFm k l m
k l m

2�d (a � b � d ) p p��9 k l kFl k l
k l

�d (a � b � d )(a � b � d )p p p���10 k l kFl k m kFm k l m
k l m

�d (a � b � d )(a � b � d )p p p���11 k l kFl m l mFl k l m
k l m

�d (a � b � d )(a � b � d )p p��12 k l kFl l k lFk k l
k l

�d (a � b � d )(a � b � d )p p p���13 k l kFl m k mFk k l m
k l m

�d (a � b � d )(a � b � d )p p p���14 k l kFl l m lFm k l m
k l m

�d (a � b � d )(a � b � d )p p p p����15 k l kFl m n mFn k l m n
k l m n

2 2p (d � d � d � d � d ) a p � (d � d � d � d � d ) b p� �1 2 4 9 10 k k 1 3 5 9 11 k k
k k

�(2d � d � d � d � d � 2d � d � d ) a b p�1 2 3 4 5 12 13 14 k k k
k

�(2d � d � d ) a d p � (2d � d � d ) b d p� �1 2 4 k kFk k 1 3 5 k kFk k
k k

2�d d p � d d d p p� ��1 kFk k 6 kFk lFl k l
k k l

2�d d p p � d d d p p .�� ��9 kFl k l 12 kFl lFk k l
k l k l
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